ENVIRONMENTAL OPTIMISATION OF RELEASES FROM INDUSTRIAL SITES INTO A LINEAR RECEIVING BODY

P.N. SHARRATT*, A.KIPERSTOK**

*Department of Chemical Engineering, UMIST, UK; **Escola Politécnica, Universidade Federal da Bahia, Brazil.

This project is being carried out at UMIST, Environmental Technology Centre, P.O.Box 88, Manchester, M60 1QD, UK.

Abstract - Changes to environmental legislation are setting new challenges to both operators and regulators. Optimisation tools can help to turn subjective standards such as Best Practicable Environmental Option (BPEO) (HMIP, 1994; Sharratt, 1995) into more objective ones. Mixed Integer Non Linear Programming (MINLP) is used in this work to optimise overall environmental performance for a group of plants. These plants discharge their final effluents to the same receiving body - a river. The optimisation considers not only the possible configurations within each plant but also the behaviour of the receiving body. A two-stage optimisation is used. Examples illustrate the features of the model.

INTRODUCTION

The problem considers several industrial sites which may discharge liquid effluents at a number of points along a one dimension receiving body - a river. A pollutant has to be removed from these discharges to prevent its concentration anywhere in the river exceeding a defined standard. Pollutant removal is assumed to be achieved at each site in a mass-exchange network (MEN). The optimisation aims to find the minimum total cost (operating + investment) to achieve the standard.

In developing synthesis methodologies it is highly desirable to identify those properties that help reduce the scale of the combinatorial problem (El-Halwagi and Manousiouthakis, 1990). This reduction can be achieved by dividing the global problem into a number of more simple ones. Therefore, to tackle this problem, a two-stage approach was used. In the first stage each site's MEN was optimised for a range of possible discharge levels. This allowed construction of a cost-load function for each plant. These cost-load functions were then used in the second stage. Here, both the discharge points into the river and the pollutant loads released from the plants were variables. Knowing the optimal discharge for each site, the internal (MEN) configuration for each site could be found simply by referring back to the result of the first stage.

DESCRIPTION OF THE PROBLEM

Consider a set of industrial plants \(P = \{P_p | p = 1 \ldots NP\} \) discharging their liquid effluents into a river. A set \(RB = \{RB_r | r = 1 \ldots NRB\} \) of sections exist in the water stream, where the effluents from the elements of \(P \) can be discharged (Figure 1). Plants are only allowed to discharge at certain points along the river. These points are defined in set \(POSDIS = \{(P_p, RB_r) | P_p \in P, RB_r \in RB, \text{ and a discharge from } P_p \text{ to } RB_r \text{ is possible}\} \). Each plant \(P_p \) has a set \(R_{pi} = \{R_{pi} \} \) of rich streams (effluents) containing pollutant and a set \(Sp = \{Sp_j \} \text{ of lean streams capable} \text{ of removing the pollutant from the rich streams. The rich streams have fixed mass flow rates } G_{pi} \text{ and initial concentrations } Y_{Spj} \text{ of pollutant. The lean streams also called mass separating agents (MSA), have variable mass flow rates } L_{pj} \text{ limited by upper bounds } L_{Upj}. \text{ Their supply composition } X_{Spj} \text{ are fixed and their final concentrations } X_{Tpj} \text{ of pollutant. Each lean stream is associated with an operational cost. The key pollutant is transferred from the rich streams to the lean streams in countercurrent mass exchangers. This equipment has an annualised cost which depends on its size. The pipework from plants to final discharge points also has a cost. The objective is to find the minimum global annualised costs (over all plants) that will keep the concentration of the key component, at any point of the receiving body. A two-stage optimisation is used. Examples illustrate the features of the model.}

To the flowrate \(F_{in} \), entering a section in the water stream, are added discharges \(\sum_p EF_{pr} \text{ from the plants. Between discharge points, the flow rate is augmented by a riverside contribution per unit of length, CONF. Each lean stream is associated with an operational cost. The key pollutant is transferred from the rich streams to the lean streams in countercurrent mass exchangers. This equipment has an annualised cost which depends on its size. The pipework from plants to final discharge points also has a cost. The objective is to find the minimum global annualised costs (over all plants) that will keep the concentration of the key component, at any point of the receiving body. A two-stage optimisation is used. Examples illustrate the features of the model.}
FIRST STAGE: PLANT OPTIMISATION

The aim is to construct a relationship between the final load of the key pollutant released by each plant, and the cost of achieving that load. For this, a series of optimisation runs were performed. For each MEN, the minimum cost was obtained as a function of its possible final discharge loads.

\[
\text{COST}_p = f(\text{FinalLoad}_p)
\]

(2)

The minimisation of the cost, for the various final loads, for each plant, was performed using the generalised match-network hyperstructure (Papalexandri et al., 1994). This approach presents some advantages over the pinch approach used by other authors (El-Halwagi and Manousiouthakis, 1989; 1990; Kiperstok and Sharratt, 1995). A major one is the ease with which the discharge concentration of the key pollutant can be considered as a variable in the MINLP. This greatly simplifies the construction of the cost-load functions.

Assumptions

The assumptions considered for each of the plants' MENs, are similar to those used elsewhere (Papalexandri et al., 1994; El-Halwagi and Manousiouthakis, 1990):

1. The mass flow rate of each stream remains essentially unchanged throughout the network.
2. All the required separation duties are based on the exchange of a single (key) component, not depending on the presence of other solutes.
3. Mixing of different streams is only allowed for the rich streams just before they leave the plant.
4. In the range of compositions involved, the equilibrium relation governing the distribution of the key component between the i th rich stream and the j th lean one were linear i.e.

\[
Y_{pi} = m_{pi} \cdot X_{pj} + b_{pj} \quad (p \in P_p, \ i = 1, 2, .. NR_p \text{ and } j = 1, 2, .. NS_p)
\]

(3)

where both \(m_{pi} \) and \(b_{pj} \) constants whose values depend on the characteristics of the system involving the key solute, the rich and the lean stream.
5. The lean streams are considered as once-through MSAs. Regeneration and recycling of the MSAs is not considered.
6. The MENs operate under constant pressure and temperature.
7. All mass exchanges are counter-current.

The above assumptions reduce the complexity of the problem and the computational effort, but are nevertheless reasonably realistic

SECOND STAGE: GLOBAL OPTIMISATION

The second stage of the problem is illustrated schematically in Figure 2.

Assumptions

The following assumptions are made for the second stage of the problem:

1. The receiving body behaves as a one dimensional water stream. Its characteristics are only computed at a set of locations along its axis (RB, s).
2- The water stream receives contributions of clean water (without the key pollutant), between the RBs.
3- Plants can only discharge their effluents in the RBs.
4- Each plant can discharge its effluents into one or more RBs.
5- The key pollutant does not undergo any decay process in the receiving body.
6- Costs for the pipework are function only of the distance between plant and point of discharge.

Formulation of the second stage of the model
The second stage of the model is also formulated as a MINLP. The elements of this model are:

VARIABLES
- \(\beta_{pr} \) - Binary variable, denotes the existence (1) or not (0) of a discharge from plant \(P_p \) to section RBs.
- \(F_{or} \) - Flow rate of the water stream leaving section RBs.
- \(F_{ir} \) - Flow rate of the water stream entering section RBs.
- \(C_{Or} \) - Concentration of key component in the water stream leaving section RBs.
- \(C_{Ir} \) - Concentration of key component in the water stream entering section RBs.
- \(EF_{pr} \) - Flow rate of aqueous effluent from plant \(P_p \) discharging into RBs.
- \(YEF_{p} \) - Concentration of key component in the aqueous effluent from plant \(P_p \).
- \(COST_p \) - Cost of MEN in plant \(P_p \), obtained from the first stage of the solution as a function of \(\text{FinaLoad}_p \).
- \(\text{FinaLoad}_p \) - Load of key component leaving plant \(P_p \).
- \(\text{TotalCost} \) - Total annualised cost, includes operational and annualised capital costs of MEN and final effluents pipeworks.

CONSTANTS
- \(G_p \) - Total flow rate of aqueous effluents from plant \(P_p \).
- \(DRBr \) - Distance from section RB to section RB of the receiving body.
- \(DDT_{pr} \) - Distance from plant \(P_p \) to Section RB of the receiving body.
- \(CONF \) - Flowrate of inflow contributions of clean water into the receiving body, per unit of distance.
- \(INIF \) - Initial flow rate of the receiving body.
- \(INIC \) - Initial concentration of key component in the receiving body.
- \(\text{PIPECOST} \) - Cost of pipework per unit of length.
- \(\text{ALLOWCONC} \) - Maximum allowable concentration of key pollutant in the receiving body (the quality target).

OBJECTIVE
The objective is set as the minimum cost necessary to achieve a given maximum concentration of the key pollutant in the river:

Minimise

\[
\text{TotalCost} = \sum \text{COST}_p + \sum \sum \beta_{pr} \cdot DDT_{pr} \cdot \text{PIPECOST}
\]

The first term of the equation, annualised cost of the MEN, originates from the first stage of the solution, plant optimisation (Equation 2). The second term expresses the cost of the pipework selected to link plants and discharge points.

CONSTRAINTS
a- Mass balances at each final plant mixer

\[
G_p - \sum_{RBs \in \text{POSDIS}} EF_{pr} = 0 \quad P_p \in P
\]

b- Component balances at each final plant mixer

\[
\text{FinaLoad}_p - YEF_{p} \cdot \sum_{RBs \in \text{POSDIS}} EF_{pr} = 0 \quad P_p \in P
\]

c- Mass balances at each discharge point
\[
\sum EF_{pr} \cdot F_{r} \cdot F_{O_{r}} = 0 \quad RB_{r} \epsilon R
\]

Component balances at each discharge point

(7)

\[
\sum EF_{pr} \cdot Y_{EF_{p}} \cdot F_{r} \cdot C_{r} \cdot R_{O_{r}} = 0 \quad RB_{r} \epsilon R
\]

(8)

Component balances between discharge points

(9)

Logical constraint connecting flow rate of effluent from a plant to a section of the receiving body with the existence of this discharge

(11)

Where, \((1.1 \cdot G_{p})\) is used as a large positive number to force \(b_{p}\) to assume the value 1 whenever \(EF_{pr} > 0\).

Further constraints were included as bounds to the values of some of the variables.

Maximum concentration of key pollutant in the receiving body

(12)

Limits for the final loads of key pollutant obtained from the characteristics of the plants' MEN in the first stage of the solution

(13)

EXAMPLE 1. simultaneous optimisation of four plants

This example considers four industrial sites, P1, P2, P3, and P4 discharging their effluents into a river. For the purposes of this example, P1 is the same as P3 and P2 is like P4. They all have a pair of effluents, R1 and R2, carrying a key pollutant which can be transferred to a pair of lean streams, S1 and S2, through a MEN. The data for these streams are largely based on the work of El-Halwagi and Manousiouthakis, 1990. Data are shown in Table 1.

TABLE 1 Characteristics of the streams

<table>
<thead>
<tr>
<th>Plants</th>
<th>Rich Streams</th>
<th>Lean Streams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G_{p})</td>
<td>(V_{S_{p}})</td>
</tr>
<tr>
<td>R1</td>
<td>0.25</td>
<td>0.13</td>
</tr>
<tr>
<td>R2</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(Y_{r}) = 0.734(X_{r}) + 0.001</td>
<td>(Y_{r}) = 0.111(X_{r}) + 0.008</td>
</tr>
</tbody>
</table>

Lean stream \(S_{1}\) is used as extractant in perforated plates exchangers. \(S_{2}\) is used in packed columns. The mass transfer coefficient \(K_{ya}\), for these is given by the following expressions:

\(K_{ya} = 0.685G_{e}^{0.67}\) Kg of pollutant / m³ s Ay for the R1-S2 systems,

\(K_{ya} = 0.333G_{e}^{0.67}\) Kg of pollutant / m³ s Ay for the R2-S2 systems.

Equilibrium relations controlling the mass transfer of the key pollutant from rich to lean streams are:

\(Y_{r} = 0.734X_{r} + 0.001\), \(Y_{r} = 0.111X_{r} + 0.008\), \(Y_{r} = 0.734X_{r} + 0.001\), \(Y_{r} = 0.148X_{r} + 0.013\)

For all plants, the cost of the perforated-plates columns was given by $332,500(NST)°74S and the cost of packed columns by $420,000(HK)°81S (NST is the number of plates, HK is the height of the packed column in meters and S is the cross section in square meters). Mass separating agent \(S_{1}\) costed 0.01$/kg and \(S_{2}\) costed 0.0095 $/kg. Capital was
amortized over 10 years with an annual interest rate of 10% and no final salvage value. For all calculations, operation was for 8760 hours per year. Pipework costed $437/m (PIPECOST).

A small river received the discharges of all four plants. The thirteen possible discharge points are 200 m. apart from each other and are numbered from RB0 to RB12. The plants are located according to Figure 3. Distances from each plant to the receiving body points are given in Table 2.

The maximum allowed concentration of the key pollutant in the river was fixed at 0.008 w/w. RB0 was considered to be the initial point of the river, therefore, no former contributions exist. Inflows of fresh water from the riversides were assumed to be 0.0040 m³/sec per m of river.

First stage, plant optimisation
At this first stage a relationship is sought between the final load of the key pollutant, released by each plant, and the cost of achieving it, in the plant's MEN. The hyperstructure model was run for values of FinalLoad ranging from 0.0185 to 0.0385 kg/s, for each plant. These being the extremes of zero and maximum treatment. Results allowed the correlation of COSTp as functions of FinalLoad:

\[
\text{COST}_1 = \text{COST}_3 = 2412.63 \exp(-163.24 \text{FinalLoad}) - 15940.50 \text{FinalLoad} + 610.08 \tag{14}
\]

\[
\text{COST}_2 = \text{COST}_4 = 1828.47 \exp(-191.32 \text{FinalLoad}) - 15285.20 \text{FinalLoad} + 589.48 \tag{15}
\]

Table 2: Pipework distances from plants to receiving body points, in m.

<table>
<thead>
<tr>
<th>Discharge points</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB0</td>
<td>800</td>
<td>1420</td>
<td>1410</td>
<td>900</td>
</tr>
<tr>
<td>RB1</td>
<td>720</td>
<td>1320</td>
<td>1380</td>
<td>870</td>
</tr>
<tr>
<td>RB2</td>
<td>610</td>
<td>1220</td>
<td>1330</td>
<td>840</td>
</tr>
<tr>
<td>RB3</td>
<td>500</td>
<td>1220</td>
<td>1300</td>
<td>750</td>
</tr>
<tr>
<td>RB4</td>
<td>420</td>
<td>1320</td>
<td>1220</td>
<td>640</td>
</tr>
<tr>
<td>RB5</td>
<td>440</td>
<td>1420</td>
<td>1180</td>
<td>490</td>
</tr>
<tr>
<td>RB6</td>
<td>490</td>
<td>1570</td>
<td>1180</td>
<td>360</td>
</tr>
<tr>
<td>RB7</td>
<td>500</td>
<td>1660</td>
<td>1300</td>
<td>250</td>
</tr>
<tr>
<td>RB8</td>
<td>500</td>
<td>1780</td>
<td>1450</td>
<td>160</td>
</tr>
<tr>
<td>RB9</td>
<td>500</td>
<td>1850</td>
<td>1580</td>
<td>290</td>
</tr>
<tr>
<td>RB10</td>
<td>480</td>
<td>1900</td>
<td>1700</td>
<td>410</td>
</tr>
<tr>
<td>RB11</td>
<td>450</td>
<td>1940</td>
<td>1800</td>
<td>580</td>
</tr>
<tr>
<td>RB12</td>
<td>500</td>
<td>2000</td>
<td>1930</td>
<td>740</td>
</tr>
</tbody>
</table>

Second stage, global optimisation
The model the second stage was run using Equations 14 and 15 to represent the plants. Figure 3 shows the selected discharge points. In the optimal solution, 37% of the initial pollutant load was removed by the MEN in plants P1 and P3. Removal was of 49% for plants P2 and P4. Costs are shown in Figure 4 and the river conditions in Figure 5.

EXAMPLE II, successive optimisation of four plants
Example I depicted an unusual situation. Four industrial sites optimised their pollution control facilities simultaneously. More commonly, plants are obliged to adapt their releases to conditions found in the receiving bodies at the time they apply for or their environmental authorisations. We now contemplate this situation for the same four plants and river as the first example.

In this example, plants were installed in the order: P1, P4, P3 and P2 at the same locations as Example I. At the time of their installation, each plant had to meet the same objective by setting an appropriate discharge load and location. The concentration of the key pollutant at any point of the river could not exceed 0.008 w/w. When P1 was installed, no other plant was operating. When P2 was installed the optimum solution was found for the situation where plant P1 was already operating and releasing its effluents. The same approach was followed for the other two plants. The models already described, were used to find the optimum solution for each plant. However, existing plants' releases were fixed to the values they were authorised to operate. Results are compared to those found in Example I (simultaneous case).
In the successive case, the first two plants P_1 and P_4 take full advantage of the dilution capabilities of the river. No pollutant removal is needed in these two plants. When plant P_1 installs the limits for the final release of the key pollutant to be relaxed beyond the initial 0.0185 kg/s used in Example 1. The cost function had to be extrapolated beyond its original limits, to estimate the cost. For plant P_4, no feasible solution was found - in other words, this plant would have to produce a zero discharge to meet the river quality standard. Again, using the same cost function, the cost of zero discharge was estimated. The values presented show that it would be much more sensible for plants P_3 and P_2 to invest in abatement equipment in plants P_4 and P_1 (if possible), in order to achieve a more cost effective solution (Figure 4).

The conditions in the river may be found in Figure 5. It may be seen that the river's capabilities are poorly exploited in the successive case.

CONCLUSIONS
Optimisation models can be used to improve the enforcement of environmental legislation where "best" technologies and "acceptable" costs are demanded. Considering the receiving environment together with the abatement design within the individual plants allows solutions with significantly lower environmental impacts at the same cost. The study shows that the use of optimisation tools for design can be moved outside the boundaries of an individual plant or site. The consideration of the combined environmental impact of several plants allows the tradeoff of pollution control cost between the sites. For the case considered, which is typical of industrial development along a river, large potential cost savings and environmental improvements can be identified. The use of a cost-load function provides a well defined and useful link between plant and environment.

REFERENCES
HMIP, 1994, Environment, economics and BPEO. Assessment principles for Integrated Pollution Control. Consultation document.